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1. (a) The quadrupole term gives rise to a potential of the form,

V (r, θ) =
Y20(θ)
5ε0r3

×
∫
dτ ′ρ(r′, θ′)(r′)2Y ∗

20(θ
′) =

3
2 cos

2 θ − 1
2

4πε0r3

∫
dτ ′

1
2

(
3(r′ cos θ′)2 − (r′)2) ρ(r′, θ′)

=
1

4πε0r3
1
2

[∫
dτ ′

(
3(z′)2 − (r′)2) ρ(r′, θ′)

] (
3
2
cos2 θ − 1

2

)
=

1
2Qzz

(
3
2 cos

2 θ − 1
2

)
4πε0r3

,

(1)

where we use the fact that r′ cos θ′ = z′ and that,

Qzz =
∫
dτ ′

(
3(z′)2 − (r′)2) ρ(r′, θ′). (2)

(b) Just as above, we have,

V (r, θ) =
Y00(θ)
ε0r

×
∫
dτ ′ρ(r′, θ′)Y ∗

00(θ
′) +

Y10(θ)
3ε0r2

×
∫
dτ ′ρ(r′, θ′)(r′)Y ∗

10(θ
′)

=
1

4πε0r

∫
dτ ′ρ(r′, θ′) +

1
4πε0r2

∫
dτ ′ρ(r′, θ′)r′ cos θ′ =

Q

4πε0r
+

pz

4πε0r2
,

(3)

where we’ve used the fact that,

Q =
∫
dτ ′ρ(r′, θ′) (4)

pz =
∫
dτ ′ρ(r′, θ′)z′ =

∫
dτ ′ρ(r′, θ′)r′ cos θ′. (5)

2. (a) We consider the force on a pointlike, permanent dipole due to the presence of an externally applied electric
field �E. We would like to derive this by using the fact that �F = −∇U , where U = −�p · �E. That is, the
force on a pointlike dipole due to an external field can be understood as arising from the variation of the
energy of the dipole as we move it around - the dipole experiences a force in the direction in which its
energy of interaction decreases the fastest. In particular, since we assume that the dipole moment is fixed
as we do this, we do not differentiate the dipole vector when we use this formula. Using the product rule,

∇( �A · �B) = �A× (∇× �B) + �B × (∇× �A) + ( �A · ∇) �B + ( �B · ∇) �A, (6)

with �A = �E and �B = �p and the fact that ∇× E = 0 in electrostatics, we see that,
�F = −∇U = −∇(−�p · �E) = �p× (∇× �E) + �E × (∇× �p) + (�p · ∇) �E + ( �E · ∇)�p = (�p · ∇) �E. (7)

(b) Now, using the same identity, we see that an extra term survives as from Ampere’s Law it is clear that �B
does not have vanishing curl,

�F = −∇U = −∇(−�m· �B) = �m×(∇× �B)+ �B×(∇× �m)+(�m·∇) �B+( �B ·∇)�m = �m×(∇× �B)+(�m·∇) �B. (8)

3. (a) We will get to the general expression by using the expression we derived in class and changing coordinates
in the following way. First, we note that since p cos θ = �p · r̂ and �p = pẑ, we can write,

4πεz �E(�r) = p
3r̂ cos θ − ẑ

r3
=
3r̂(r̂ · �p)− �p

r3
(9)

Now, since �p, r̂, �r and �E are all vectors, they transform as �p′′ = R�p, r̂′′ = Rr̂, �r′′ = R�r and �E′′ = R�E
under a rotation of coordinates. Further, as dot products are invariant under rotations,

r̂′′ · �p′′ = (Rr̂)TR�p = r̂TRTR�p = r̂T �p = r̂ · �p, (10)
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and (r′)2 = �r′′ · �r′′ = �r · �r = r2. Applying a rotation matrix R which takes the polarization vector �p = pẑ
to one that points in some desired direction to both sides of equation (9), we see that

4πεz �E′′(�r′′) =
3r̂′′(r̂ · �p)− �p′′

r3
=
3r̂′′(r̂′′ · �p′′)− �p′′

(r′′)3
. (11)

Now, just relabelling the primed quantities as unprimed quantities, we see that for a dipole at the origin
now with with arbitrary �p, we must have,

4πεz �E(�r) =
3r̂(r̂ · �p)− �p

r3
. (12)

Further, using the fact that the dipole moment is unchanged by translation of the origin (proved in Griffiths
3.4.3), we can translate the origin of the coordinates by �r′′ = �r+ �r′ such that the dipole is centered at �r′,
and the above equation becomes,

4πεz �E(�r′′) =
3(r̂′′ − r̂′)((r̂′′ − r̂′) · �p)− �p

|�r′′ − �r′|3 . (13)

Again, we can relabel the double primed quantities as unprimed, and using n̂ = r̂ − r̂′ we find,

4πεz �E(�r) =
3(r̂ − r̂′)((r̂ − r̂′) · �p)− �p

|�r − �r′|3 =
3n̂(n̂ · �p)− �p

|�r − �r′|3 . (14)

(b) We find the energy of the configuration by evaluating the energy of one dipole in the electric field due to
the other one,

4πε0U12 = −4πεz�p1 · �E2(�r2) = −�p1 · 3n̂(n̂ · �p2)− �p2
|�r1 − �r2|3 = −3(n̂ · �p1)(n̂ · �p2)− �p1 · �p2

|�r1 − �r2|3 (15)

(c) If two dipoles are parallel to each other and their line of separation, then we have that n̂ · �p1 = p1,
n̂ · �p2 = p2 and �p1 · �p2 = p1p2, so we have,

4πε0U12 = −3(n̂ · �p1)(n̂ · �p2)− �p1 · �p2
|�r1 − �r2|3 = − 2p1p2

|�r1 − �r2|3 . (16)

As the energy of this configuration decreases if we bring the two dipoles together, we see that they attract.
Now, suppose that they are parallel to each other and perpendicular to their line of separation, so n̂·�p1 = 0,
n̂ · �p2 = 0 and �p1 · �p2 = p1p2, then we have,

4πε0U12 = −3(n̂ · �p1)(n̂ · �p2)− �p1 · �p2
|�r1 − �r2|3 =

p1p2
|�r1 − �r2|3 , (17)

and we see that their electrostatic interaction energy increases if we bring them closer together, indicating
that they repel.

(d) Now, suppose that both dipoles are at fixed positions and that the first dipole has a fixed orientation
parallel to their line of separation. Then we have that �p1 = n̂p1, n̂ · �p1 = p1 and �p1 · �p2 = p1n̂ · �p2 and

4πε0U12 = −3(n̂ · �p1)(n̂ · �p2)− �p1 · �p2
|�r1 − �r2|3 = −3p1(n̂ · �p2)− p1(n̂ · �p2)

|�r1 − �r2|3 = −2p1(n̂ · �p2)
|�r1 − �r2|3 . (18)

Clearly, for fixed distance, the energy is minimized if �p2 is aligned with n̂, so n̂ · �p2 = p2, and we expect
that the dipoles will want to align. If we suppose instead that the the first dipole has a fixed orientation
perpendicular to their line of separation, we have that n̂ · �p1 = 0 and

4πε0U12 = −3(n̂ · �p1)(n̂ · �p2)− �p1 · �p2
|�r1 − �r2|3 =

�p1 · �p2
|�r1 − �r2|3 . (19)

Here, for fixed distance, the energy is minimized if �p2 is anti-aligned with �p2, so �p1 · �p2 = −p1p2.

2



4. (a) The bound and surface charge densities are given by,

σb(s = a) = �P (s = a) · n̂(s = a) = (ka)̂s · ŝ = ka (20)

ρb(s < a) = −∇ · �P (s < a) = −∇ · (ksŝ) = −1
s

∂

∂s
(s(ks)) = −2k (21)

(b) As we can calculate the fields produced by this polarization just by computing the field due to the bound
charges, we can use Gauss’s Law for a cylindrical surface inside and outside to do the computation,

2πslEs(s < a) =
1
ε0

∫
ρbdτ

′ =
1
ε0
2πl

∫ s

0

(−2k)s′ds′ = −2πlks
2

ε0
(22)

2πslEs(s > a) =
1
ε0

(∫
ρbdτ

′ +
∫
σbda

′
)
=
1
ε0

(
2πl

∫ a

0

(−2k)s′ds′ + 2πla(ka)
)
= 0 (23)

So we have,

Es(s < a) = −ks
ε0

(24)

Es(s > a) = 0 (25)

5. (a) Outside the conducting sphere, Gauss’s Law tells us that,
∫
�D · da =

∫
ρfdτ

′ = Q⇒ Dr(r) =
Q

4πr2
(26)

(b) Since we are in a linear dielectric material, we have a simple relation between �E, �D, and �P ,

�D = ε0 �E + �P = ε �E ⇒ �P = (ε− ε0) �D/ε = (1− 1
εr
)
Qr̂
4πr2

. (27)

The bulk bound charge density is then,

ρb = −∇ · �P = −(1− 1
εr
)
Q

4π
∇ · ( r̂

r2
) = −Qεr − 1

εr
δ3(�r), (28)

which vanishes for r > 0.

(c) Since we have a linear dielectric, we know that

�E =
1
ε
�D =

Qr̂
4πεr2

. (29)

(d) Now, using Gauss’s Law for both the bound charge computed in part b) and the free charge Q, we see
that,

ε0

∫
�E · da = 4πε0r2Er(r) =

∫
(ρf + ρb)dτ ′ = Q−

∫
Q
εr − 1
εr

δ3(�r)dτ ′ =
Q

εr
⇒ Er(r) =

Q

4πεr2
. (30)

This result agrees with what we found in part (b), thanks to our careful treatment of the bound charge
density at the origin. Now, we can understand the significance of the pointlike bound charge at the origin
- it is the bound charge which appears to screen the bare charge of the conductor.

6. (a) We claim that the electric potential (and therefore the electric field) between the two spherical thin shells
is exactly the same as it would be with no dielectric present. To see why this is true, first note that there
is no free charge present between the two spherical shells. Now, from Griffiths Equation (4.39), the bound
charge also vanishes there for a linear dielectric material,

ρb = −∇ · �P = −∇ · (ε0χe

ε
�D) = − χe

1 + χe
ρf = 0. (31)
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Thus, by Gauss’s Law, between the two shells we have,

ε0∇ · �E = −ε0∇2V = ρb + ρf = 0, (32)

which means that V obeys Laplace’s equation between the two shells with the boundary conditions that,

V (R1) = V1 (33)

V (R2) = V2. (34)

But by the first uniqueness theorem for Laplace’s equation in section 3.1.5 of Griffiths, the solution to
Laplace’s equation in a region with boundary values for V specified is unique! 1 Thus, if we can find a
solution with these boundary conditions in the absence of dielectrics, it must still be a solution in their
presence. This is not hard to do by just using the spherical symmetry of this problem via Gauss’s Law,

ε0

∫
�E · da = −4πε0r2 ∂V

∂r
= Q⇒ V (r) =

Q

4πε0r
+ C (35)

where Q and C are determined using the boundary conditions (note V0 = V1 − V2),

V (R1) =
Q

4πε0R1
+ C = V1 (36)

V (R2) =
Q

4πε0R2
+ C = V2 ⇒ Q = 4πε0V0

R1R2

R2 −R1
. (37)

Thus, the electric field is just,

Er(r) = −∂V
∂r

=
Q

4πε0r2
=

R1R2V0

(R2 −R1)r2
. (38)

(b) We can compute the bound surface charge density by first computing the polarization. Since this is a
linear dielectric, we know that the polarization is just,

�P (θ < π/2) = (ε− ε0) �E = (εr − 1)R1R2V0ε0r̂
(R2 −R1)r2

, (39)

for the bottom half hemisphere filled with dielectric and zero for the top vacuum half. The bound surface
charge density in dielectric filled part is,

σb
2(θ < π/2) = n̂ · �P (θ < π/2, r = R2) = r̂ · �P (θ < π/2, r = R2) =

(εr − 1)R1V0ε0
(R2 −R1)R2

, (40)

while the bound surface charge density in the vacuum section vanishes.

(c) To calculate the free surface charge density, we recall that since we are in a linear dielectric medium, the
boundary condition for the electric field at R1 can be written entirely in terms of the free surface charge
density (Griffiths Equation (4.40)),

σf
1 (θ < π/2) = εEr(R1, θ < π/2) =

εR2V0

(R2 −R1)R1
(41)

σf
1 (θ > π/2) = ε0Er(R1, θ > π/2) =

ε0R2V0

(R2 −R1)R1
. (42)

Thus, we see that the free surface charge density is different on the two hemispheres.
1The proof there relies on the fact that if there were more than one solution with the above boundary conditions, then their difference

would be a solution with V vanishing on the boundaries. But since a solution to Laplace’s equation reaches its maximum and minimum

values on the boundary, which are then both zero, it must vanish everywhere.
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7. Griffiths 4.38. We’d like to relate the susceptibility (which is the response of the material to the total macro-
scopic electric field �P = ε0χe

�E) to the atomic polarizability (which is defined by the response of an atom to
only the part of the macroscopic electric field not due to the atom itself, �p = α�Eelse = α( �E − �Eatom)). Thus,
we need to find the contribution of the atom itself to the total macroscopic electric field. Suppose that each
atom occupies a sphere of radius R, so in particular, N = 1

4πR3/3 . Now, we will the result of problem 3.41 of
Griffiths (which we will prove later) that the average field inside a sphere of radius R due to all the charge
within the sphere is given by,

�Eave = − 1
4πε0

�p

R3
, (43)

where �p is the dipole moment of all the charge in the sphere (i.e., the dipole moment of the atom). As we
assume that the macroscopic field does not vary significantly over a single atomic radius, we can safely assume
that the contribution of the atom to the macroscopic field is just this average field,

�Eatom = �Eave = −N�p
3ε0
. (44)

Thus, we have,

�E = �Eelse + �Eatom = �Eelse −
N�p

3ε0
= �Eelse −

Nα

3ε0
�Eelse =

(
1− Nα

3ε0

)
�Eelse. (45)

So, we find
�P = N�p = Nα�Eelse =

Nα

1− Nα
3ε0

�E = ε0χe
�E, (46)

which means that,

χe =
Nα/ε0

1− Nα
3ε0

. (47)

Now, let use prove equation (43). Consider a single charge at some point �r within the sphere. By Coulomb’s
Law, its electric field is just,

�E(�r′) =
q(r̂′ − r̂)

4πε0|�r′ − �r|2 (48)

The average electric field inside the sphere BR produced by this charge is just,

�Eave =
1

4πR3/3

∫
BR

�E(�r′)dτ ′ =
1

4πR3/3

∫
BR

q(r̂′ − r̂)
4πε0|�r′ − �r|2 dτ

′ =
1

4πε0

∫
BR

−q(r̂ − r̂′)
4πR3/3|�r − �r′|2 dτ

′. (49)

Now, note that (comparting with Griffiths 2.8) this average electric field is the same as the actual electric field
at the point �r produced by a uniformly charged sphere of radius R with a charge density ρ = − q

4πR3/3 ! But
because of symmetry, we can calculate this much more easily using Gauss’s Law,

ε0

∫
�E · da = 4πε0r2Er(r) =

∫
ρdτ ′ = ρ4πr3/3⇒ �Eave(r) = − qrr̂

4πε0R3
(50)

Now, summing over all the charges in the atom, we see that,

�Eatom = −
∑

i qirir̂i

4πε0R3
= − �p

4πε0R3
, (51)

which is what we wanted to prove.
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